Maths Calculations Policy 2022

Glenfield Primary School

This must be viewed alongside the subtraction map so that connections can be made.

YR	Y1	Y2	Y3	Y4	Y5	Y6
Understanding the operation and related vocabulary						
understand addition as: -combining two quantities - increasing one quantity	understand addition as: - combining two or more quantities - increasing one quantity	continue to understand addition as: - combining two or more quantities - increasing one quantity	continue to develop understanding of addition			
		show that addition of two numbers can be done in any order (the commutative law)	understand the principles of the commutative and associative law	continue to understand the principles of the commutative and associative laws		use their knowledge of the order of operations
		recognise the inverse relationship between addition and subtraction	understand the inverse relationship between addition and subtraction	continue to understand the inverse relationship between addition and subtraction		
record using marks that they can interpret and explain	read, write and interpret mathematical statements involving addition (+) and equals (=) signs solve missing number problems	solve missing number problems.	solve missing number problems	continue to solve missing number problems	continue to solve missing number problems begin to use brackets	continue to solve missing number problems explore the order of operations using brackets
begin to use the vocabulary involved in adding add, altogether, total, , ..more than ..	understand the vocabulary related to addition plus, the sum of	understand the vocabulary related to addition	understand, read and spell vocabulary related to addition correctly increase	understand, read and spell vocabulary related to addition correctly	read, spell and pronounce mathematical vocabulary related to multiplication correctly	read, spell and pronounce mathematical vocabulary related to multiplication correctly
Recalling number facts						
recall addition facts to 5	recall and use addition facts to 10 fluently	recall and use addition facts to 20 fluently, and derive and use related facts up to 100	continue to recall and use addition facts to 20 fluently, and derive and use related facts beyond 100 80+50	continue to use knowledge of addition facts and place value to derive related facts 800+500	continue to use knowledge of addition facts and place value to derive related facts with numbers to one decimal place $1.2+0.7$	continue to use knowledge of addition facts and place value to derive related facts with numbers to two decimal places

know number pairs with a total of 10 $6+?$	know number pairs with a total of 20	know complements to the next multiple of 10 $52+?=60$ know pairs of multiples of 10 with a total of 100	know pairs of two-digit numbers with a total of 100	know complements to the next multiple of 100 $568+?=600$	know complements to 1 $0.83+0.17=1$ recall pairs of three-digit numbers with a total of 1000	know complements to the next whole number $7.632+$? $=8$
Mental methods and mental methods with jottings						
find the total number of items in two groups by counting all of them add two single-digit numbers and count on to find the answer.	add one-digit and two-digit numbers to 20, including zero represent and use number bonds within 20	add numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three onedigit numbers	add numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds	continue to practise mental methods of addition with increasingly large numbers	add numbers mentally with increasingly large numbers add tenths, and one-digit whole numbers and tenths	perform mental calculations, including with mixed operations, large numbers and decimals add positive and negative integers (in contexts such as temperature)
Formal written layout						
		add numbers with up to two digits, using number lines and partitioning	add numbers with up to three digits, using formal written methods of columnar addition	add numbers with up to 4 digits using the formal written method of columnar addition where appropriate	add whole numbers with more than 4 digits, including using formal written methods	practise addition for larger numbers, using formal written methods
				add decimals to 2 decimal places (in the context of money or measures)	add decimals, including a mix of whole numbers and decimals and decimals with different numbers of decimal places	continue to practice addition calculations with decimals (up to 3 decimal places)
Estimating and checking						
		check calculations by adding in a different order	estimate the answer to a calculation use inverse operations to check answers use equivalent calculations to check answers	estimate the answer to a calculation use inverse operations to check answers use equivalent calculations to check answers	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy continue to use appropriate strategies to check answers	use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy. continue to use appropriate strategies to check answers

ADDITION: Y1		
Understanding the operation and related vocabulary.	Mental Calculations	Written Calculations
Understanding the operation Understand addition as: - Combining two or more quantities. - Increasing one quantity.	Number facts Recall and use addition facts to 10 fluently the total of 6 and 36 plus 24 more than 5 Know number pairs with a total of 20 $16+\square=20 \quad 20=3+\square$ Mental methods and jottings Add one-digit and two-digit numbers to 20 , including zero using concrete objects, pictorial representation and	No formal written layout. Children record their maths using pictorial representations, number lines and mathematical statements. Counting and Combining sets of Objects $5+7=12$
Read, write and interpret mathematical statements involving addition (+) and equals (=) sign. $14+5=19 \quad 17=9+8$	Represent and use number bonds within 20, experiencing the $=$ sign in different positions.	Add one-digit and two-digit numbers to 20 , including zero
Solve missing number problems $11+\square=18 \quad \square=13+2 \quad 13=\square+\square$	Counting on (sequencing)	$7+4$
Understand addition and subtraction as relate	$12+3$ (by counting on in ones; 13, 14, 15) With Jottings:	
Understand addition and subtraction as related operations. E.g. $7+3=10$ is related to $10-3=7$	Progress to crossing the tens boundary $18+5$ (by partitioning 5 to bridge the tens boundary; + $2,+3)$	OR
	Partitioning $5+7$ (by partitioning 7 in to 5 and 2) $5+5+2$	$\begin{array}{lllllllllllllll} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \text { OR } & & & & & & & & & & & & \end{array}$
10	Use bundles of straws and Dienes to model partitioning teen numbers into tens and ones and develop their understanding of place value.	$\because \because$
When introduced to the equals sign, children should see it as signifying equality. They should become used to seeing it in different positions.	Children have opportunities to explore partitioning numbers in different ways. e.g. $7=6+1,7=5+2,7=4+3$	

ADDITION: Y2		
Understanding the operation and related vocabulary.	Mental Calculations	Written Calculations
Understanding the operation Continue to understand addition as: - Combining two or more quantities. - Increasing one quantity. Show that addition of two numbers can be done in any order (commutative law) Recognise that $5+27$ is equal to $27+5$ Continue to recognise the inverse relationship between and addition and subtraction using numbers up to 20. Write the related number sentences $\begin{array}{llll} 15+2=17 & 2+15=17 & 17=15+2 & 17=2+15 \\ 17-2=15 & 17-15=2 & 2=17-15 & 15=17-2 \end{array}$ Solve missing number problems $17+\square=27 \quad \square=21+4 \quad 10=\square+\square$ Vocabulary Understand the vocabulary related to addition +, add, addition, more, plus, make, sum, total, altogether, how many more to make...? how many more is... than...? how much more is...? =, equals, sign, is the same as, Tens, ones, partition Near multiple of 10, tens boundary, More than, one more, two more... ten more... one hundred more Generalisation - Noticing what happens when you count in tens (the digits in the ones column stay the same) - Odd + odd = even; odd + even = odd; etc - show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot	Number facts Recall and use number facts to 20 fluently and derive and use related facts up to 100 . 7 add 84 more than 950 plus 30 the sum of 40 and 50 Know complements to the next multiple of 10. $52+\square=60 \quad 76+\square=80$ Know pairs of multiples of 10 with a total of 100. $60+\square=100 \quad 100=70+\square$ Mental methods and jottings Add numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three one-digit numbers	Continue to use number lines to develop understanding of: Counting on in tens and ones $\begin{aligned} 23+12 & =23+10+2 \\ & =33+2 \\ & =35 \end{aligned}$ Partitioning and bridging through 10. The steps in addition often bridge through a multiple of 10 e.g. Children should be able to partition the 7 to relate adding the 2 and then the 5 . $8+7=15$

Counting on

$37+20$（by counting on in tens；47，57）
With Jottings
Begin by not crossing the tens boundary
$42+23$（by partitioning the second number and counting on；＋20，＋ 3
Progress to crossing the tens boundary
$47+15$（by partitioning the second number and counting on；＋10，＋3，＋2）

Partitioning

$23+12(20+10=30,3+2=5$ then $30+5=35)$
With Jottings
Begin by not crossing the tens boundary
$42+23(40+20=60 ; 3+2=5$ then $60+5)$
－Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems．This understanding could be supported by images such as this．

ゆゆゆゃ
 50

$$
7+?=10
$$

6 and how many more make 10？ $6+\square=10$

Some Key Questions

How many altogether？How many more to make．．．？How many more is．．．than．．．？How much more is．．．？
s this true or false？
If I know that $17+2$＝19，what else do 1 know？（e．g． $2+$ $17=19 ; 19-17=2 ; 19-2=17 ; 190-20=170$ etc）．
What do you notice？What patterns can you see？

Progress to crossing the tens boundary
$47+15(40+10=50,7+5=12$ then $50+12=62)$

Adjusting

$34+9$（ adding 10 then subtracting 1）
With Jottings
$45+19$（by adding 20 and subtracting 1）

Using known facts and place value：
$63+4$
$3+4=7$ so $63+4=67$

Estimating：

Check calculations by adding in a different order check $27+15(27+10+5)$ with $15+20+7$

Adding 9 or 11 by adding 10 and adjusting by 1

e．g．Add 9 by adding 10 and adjusting by 1

1

Adding two－digit numbers by partitioning each number and recombining
$25+32$
$20+30=50$（tens）
$5+2=7$（ones）
$50+7=57$

Adding two－digit numbers by partitioning the second number
$25+32$
$25+30=55$
$55+2=57$

ADDITION: Y3		
Understanding the operation and related vocabulary.	Mental Calculations	Written Calculations
Understanding the operation Understand the principles of the commutative and associative law: Recognise that $45+36$ is equal to $36+45$ Recognise that if calculating $13+14+9$ the numbers can be combined in any order Understand the inverse relationship between addition and subtraction $\begin{array}{llll} 45+22=67 & 22+45=67 & 67=45+22 & 67=22+45 \\ 67-22=45 & 67-45=22 & 22=67-45 & 45=67-22 \end{array}$ Solve missing number problems $\begin{aligned} & 62+\square=74 \quad \square=45+32 \quad \square+\square=50 \\ & 100-3=67+\square \quad 45<\square+6 \quad \square+\square>54+9 \end{aligned}$ Vocabulary Hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100, inverse, rounding, column subtraction, exchange See also Y1 and Y2 Generalisations Noticing what happens to the digits when you count in tens and hundreds. Odd + odd = even etc (see Year 2) Inverses and related facts - develop fluency in finding related addition and subtraction facts. Develop the knowledge that the inverse relationship can be used as a checking method. Key Questions What do you notice? What patterns can you see? When comparing two methods alongside each other: What's the same? What's different? Look at this number	Number facts Continue to recall and use addition facts to 20 fluently, and derive and use related facts beyond 100 7 add 9,80 plus 70 , the sum of 90 and 60,30 more than 110 Know pairs of two-digit numbers with a total of 100 $74+\square=100 \quad 100=59+\square$ Mental methods and jottings Add numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds Counting On (Sequencing) $137+50$ (by counting on in tens; 147, 157, 167, 177, 187 With jottings: $345+37$ (by partitioning the second number and counting on; $+30,+5,+2$) Partitioning: $236+33(30+30=60,6+3=9,200+60+9=269)$ With jottings: $236+85(80+30=110,6+5=11,200+110+11=321)$ Adjusting: $234+99$ (by adding 100 and subtracting 1) With jottings: $334 \text { + } 59 \text { (by adding } 60 \text { and subtracting 1) }$ Using known facts and place value: $\begin{aligned} & 282+7 \\ & 2+7=9 \text { so } 282+7=289 \end{aligned}$	For those that need reinforcement, begin with using a number line and partitioning the second number. Partitioning Partition both numbers and recombine. Count on by partitioning the first number only: $\begin{aligned} 247+125= & 200+100=300 \\ & 40+20=60 \\ & 7+5=12 \\ & 300+60+12=372 \end{aligned}$ Move on to partitioning the second number only: $\begin{aligned} 247+125= & 247+100=347 \\ & 347+20=367 \\ & 367+5=372 \end{aligned}$ Children need to be secure adding multiples of 100 and 10 to any three-digit number including those that are not multiples of 10 . Towards a Written Method Introduce expanded column addition modelled with place value counters or Dienes.

How do you know?	Estimating:	4517							
	Estimate the answer to a calculation	+ 2634							
	$2467+1729$ is approximately $2500+1500$	11							
		7151							
	Use inverse operation or an equivalent calculations to check answers								
	Add numbers with up to 4 digits	Children should be able to make the choice of reverting							
		Extend to up to two places of decimals (same number of decimals places) and adding several numbers (with							
	2,138 1,378	different numbers of digits).							
	+2148	72.8							
	2,138 $\quad 3526$	+ 54.6							
		+11							
	1,378+2,148	127.4							
	1,378 + 2,148 = 3,526								
	H- \|							$\because: \%$ O 000	
	\|-... 0 - 00000000								

ADDITION: Y5		
Understanding the operation and related vocabulary.	Mental Calculations	Written Calculations
Understanding the operation Continue to solve missing number problems $\begin{array}{lll} 6.5+\square=10.7 \quad \square=8.4+3.7 \quad \square+\square=4.2 & \\ 7.3+2.9=9.9+\square & 5.2<\square-0.9 \quad \square-\square>7.2-1.9 \end{array}$ Begin to use brackets $(10+3) \times 7=\square \quad \square=10+(0.4 \times 8)$ Vocabulary tens of thousands boundary, Also see previous years Generalisation Sometimes, always or never true? The difference between a number and its reverse will be a multiple of 9. What do you notice about the differences between consecutive square numbers? Investigate $a-b=(a-1)-(b-1)$ represented visually. Some Key Questions What do you notice? What's the same? What's different? Explain why digits are carried over to the next columns.	Number facts Continue to use knowledge of addition facts and place value to derive related facts with numbers to one decimal place 1.2 plus 0.7 , the total of 0.8 and 0.9 , the sum of 0.2 and 1.3, 0.3 more than 1.7 Know complements to 1 $0.78+\square=1 \quad 0.52+\square=1$ Recall pairs of three-digit numbers with a total of 1000 $456+\square=1000 \quad 1000=\square+825$ Mental methods and jottings Add numbers mentally with increasingly large numbers. Add tenths, and one-digit whole numbers and tenths. Counting on (sequencing): $4.3+1.5$ (by partitioning the second number and counting on; $+1,+0.5$) With jottings: $19.7+2.6$ (by partitioning the second number and counting on; $+2,+0.3,+0.3$) Partitioning: $3.6+1.7(3+1=4,0.6+0.7=1.3,4+1.3=5.3)$ With jottings: $18.7+14.8(18+14=32,0.7+0.8=1.5,32+1.5=33.5)$ Adjusting: $8.3+1.9$ (by adding 2 and subtracting 0.1) With jottings: $14.6+3.9$ (by adding 4 and subtracting 0.1)	Add whole numbers with 5 digit numbers, including using formal written methods. Written methods (progressing to more than 4-digits) As year 4, progressing when understanding of the expanded method is secure, children will move on to the formal columnar method for whole numbers and decimal numbers as an efficient written algorithm. Leave a gap under the calculation for digits being carried over (see year 4). Move on to carrying underneath the whole calculation by the end of year 5 . $\begin{array}{r} 25063 \\ +\quad 7459 \\ \hline 32522 \\ \hline 111 \end{array} \begin{array}{r} 172.83 \\ +\begin{array}{r} 54.68 \\ \hline 227.51 \\ \hline 111 \end{array} \end{array}$ Place value counters can be used alongside the columnar method to develop understanding of addition with decimal numbers.

Using known facts and place value:
$7.5+2.6$
$7.5+2.5=10$ so $7.5+2.6=10.1$

Estimating

Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
$25063+7459$ is approximately $25000+7500$

Add numbers with more than 4 digits (also applicable in year 6)

$104,328+61,731=166,059$

Add with up to 3 decimal places

ADDITION: Y6		
Understanding the operation and related vocabulary.	Mental Calculations	Written Calculations
Understanding the operation Use their knowledge of the order of operations. Understand that when there are no brackets in an expression, do multiplication or division before addition or subtraction. Understand that if the operations are at the same level of priority, work out the example from left to right. Continue to solve missing number problems $\begin{aligned} & 0.63+\square=0.85 \quad \square=0.5+0.33 \quad \square+\square=0.71 \\ & 0.89+0.3=0.6+\square \quad 0.75<\square+0.06 \\ & \square+\square>0.74+0.07 \end{aligned}$ Explore the order of operations using brackets compare $14-(3+5)$ with $(14-3)+5$ Vocabulary See previous years Read, spell and pronounce mathematical vocabulary related to addition correctly Generalisations Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of remembering. Sometimes, always or never true? Subtracting numbers makes them smaller.	Number facts Continue to use knowledge of addition facts and place value to derive related facts with numbers to two decimal places 0.09 plus 0.04 , the total of 0.09 and 0.08 , the sum of 0.06 and $0.12,0.04$ more than 1.13 Know complements to the next whole number $4.83+\square=5 \quad 7.125+\square=8$ Mental methods and jottings Perform mental calculations, including with mixed operations, large numbers and decimals Add positive and negative integers (in contexts such as temperature) a $6^{\circ} \mathrm{C}$ temperature rise from $-4^{\circ} \mathrm{C}$ Counting On (Sequencing): $6.46+2.03$ (by partitioning the second number and counting on; $+2,+0.03$) With jottings: $18.7+5.64$ (by partitioning the second number and counting on; +5, +0.3, +0.34) Partitioning: $3.4+2.77(3+2=5,0.4+0.7=1.1,5+1.1+0.07=6.17)$ With jottings: $\begin{aligned} & 27.34+5.78(27+5=33,0.3+0.7=1,0.04+0.08=0.12 \\ & 33+1+0.12=34.12) \end{aligned}$ Adjusting: $6.73+0.99$ (by adding 1 and subtracting 0.01) With jottings:	Written methods As year 5, progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with columnar method to be secured. $657982+54976$ Continue calculating with decimals, including those with different numbers of decimal places $73.82+17.382$ Problem Solving Teachers should ensure that pupils have the opportunity to apply their knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen their understanding

Some Key Questions
 What do you notice?

What's the same? What's different?
Can you convince me?
How do you know?
$17.4+5.09$ (by adding 5.1 and subtracting 0.01)

Using Known Facts And Place Value:

$0.64+0.36$
$64+36=100$ so $0.64+0.36=1$

Estimating:

Use estimation to check answers to calculations and
determine, in the context of a problem, levels of

accuracy.

$73.82+17.382$ is approximately $74+17$
Continue to use appropriate strategies to check answers check $3.4+2.77$ by adding in a different order partition or add 3 and adjust

This must be viewed alongside the addition map so that connections can be made.

YR	Y1	Y2	Y3	Y4	Y5	Y6
Understanding the operation and related vocabulary						
understand subtraction as: - 'taking away' - removing part of a set \& reduction - 'difference' comparison \& how much more is needed	understand subtraction as: - 'taking away' - removing part of a set \& reduction - 'difference’ comparison \& how much more is needed	understand subtraction as: - 'taking away' - removing part of a set \& reduction - 'difference’ comparison \& how much more is needed - complement of a set	continue to develop understanding of subtraction			
		show that subtraction of one number from another cannot be done in any order	understand that the principles of the commutative and associative laws do not apply to subtraction	continue to understand that the principles of the commutative and associative laws do not apply to subtraction		use their knowledge of the order of operations
		recognise the inverse relationship between addition and subtraction	understand the inverse relationship between addition and subtraction	continue to understand the inverse relationship between addition and subtraction		
record using marks that they can interpret and explain	read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs; solve missing number problems	solve missing number problems	solve missing number problems	continue to solve missing number problems	continue to solve missing number problems begin to use brackets	continue to solve missing number problems explore the order of operations using brackets
begin to use the vocabulary involved in subtracting take away, subtract, how many are left, how many more to make, how many more, how many fewer, ...less than .., leave, how many have gone	understand the vocabulary related to subtraction minus, the difference between, how much more is ... than ..., how much less is .. than ...	understand the vocabulary related to subtraction	understand, read and spell vocabulary related to subtraction correctly decrease	understand, read and spell vocabulary related to subtraction correctly	read, spell and pronounce mathematical vocabulary related to subtraction correctly	read, spell and pronounce mathematical vocabulary related to subtraction correctly
Recalling number facts						
recall subtraction facts to 5	recall and use subtraction facts to 10 fluently	recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100	continue to recall and use subtraction facts to 20 fluently, and derive and use related facts beyond 100	continue to use knowledge of subtraction facts and place value to derive related facts	continue to use knowledge of subtraction facts and place value to derive related facts with numbers to one decimal place	continue to use knowledge of subtraction facts and place value to derive related facts with

						numbers to two decimal places
know number pairs with a total of 10 and derive related subtraction facts	know number pairs with a total of 20 and derive related subtraction facts	know complements to the next multiple of 10 know pairs of multiples of 10 with a total of 100 and derive related subtraction facts	know pairs of two-digit numbers with a total of 100 and derive related subtraction facts	know complements to the next multiple of 100	know complements to 1 recall pairs of three-digit numbers with a total of 1000 and derive related subtraction facts	know complements to the next whole number
Mental methods and mental methods with jottings						
find how many are left when some are taken away subtract two single-digit numbers and count back to find the answer. partition a given number of objects (up to 10) into 2 groups	subtract one-digit and two-digit numbers to 20, including zero represent and use number bonds within 20 partition a given number of objects (up to 20) into 2 groups	subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers	subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds	continue to practise mental methods of subtraction with increasingly large numbers	subtract numbers mentally with increasingly large numbers subtract tenths, and onedigit whole numbers and tenths	perform mental calculations, including with mixed operations, large numbers and decimals calculate intervals across zero
Formal written layout						
		Subtract numbers with up to two digits, using partitioning and number lines.	subtract numbers with up to three digits, using formal written methods of columnar subtraction	subtract numbers with up to 4 digits using the formal written method of columnar subtraction where appropriatio	subtract whole numbers with more than 4 digits, including using formal written methods	practise subtraction for larger numbers, using formal written methods
				subtract decimals to 2 decimal places (in the context of money or measures)	subtract decimals, including a mix of whole numbers and decimals and decimals with different numbers of decimal places	continue to practice subtraction calculations with decimals (up to 3 decimal places)
Estimating and checking						
		Use inverse operations to check answers	estimate the answer to a calculation use inverse operations to check answers use equivalent calculations to check answers	estimate the answer to a calculation use inverse operations to check answers use equivalent calculations to check answers	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy continue to use appropriate strategies to check answers	Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy. continue to use appropriate strategies to check answers

SUBTRACTION: Y1		
Understanding the operation and related vocabulary.	Mental Calculations	Written Calculations
Understanding the operation understand subtraction as: 'taking away' - removing part of a set \& reduction 'difference' - comparison \& how much more is needed Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs ; $14-3=11 \quad 9=16-7$ To begin with, children are given number sums, before moving onto writing their own sums. Solve missing number problems e.g. $11-\square=8 \quad \square=13-2 \quad 3=\square-\square$ Vocabulary Subtraction, subtract, take away, minus, distance between, difference between, more than, minus, less than, equals = same as, most, least, pattern, odd, even, digit, Generalisations - True or false? Subtraction makes numbers smaller	Number facts Recall and use subtraction facts to 10 fluently e.g. 6 minus 38 subtract 24 less than 9 Know number pairs with a total of 20 and derive related subtraction facts e.g. $20+0,20-1,20-2,20-3 \ldots$ Mental methods and jottings Subtract one-digit and two-digit numbers to 20, including zero Represent and use number bonds within 20 Partition a given number of objects (up to 20) into 2 groups e.g. Partition 15 into 7 and 8, 9 and 6 Counting back 15-3 (by counting back 3 in ones; 14, 13, 12) With jottings 15-6 (by counting back in ones or partitioning 6 to bridge the tens boundary; $-5,-1$) Progress to crossing the tens boundary	No formal written layout. Children will be recording their mathematics using pictorial representations, number lines and mathematical statements.

- When introduced to the equals sign, children should see it as signifying equality. They should become used to seeing it in different positions.
Children could see the image below and consider,
"What can you see here?" e.g.
3 yellow, 1 red, 1 blue. $3+1+1$ = 5
2 circles, 2 triangles, 1
square. 2 + $2+1=5$
1 see 2 shapes with curved lines and 3 with
straight lines. $5=2+3$
$5=3+1+1=2+2+1=$
$2+3$

Some Key Questions

How many more to make...? How many more is... than...? How much more is...? How many are left/left over? How many have gone? One less, two less, ten less... How many fewer is... than...? How much less is...? What can you see here?
Is this true or false?

Counting up
$9-6$ (by counting up from 6 to 9 in ones; 7, 8, 9) With jottings
19-14 (by counting up from 14 to 19 in ones; 15, 16, 17 $18,19)$

Using known facts and place value

$6-4=2$ so $16-4=12$

Reinforcement of number facts, bonds, etc to be reinforced through the use of number songs and other 'active’ exercises.

Use of concrete and pictorial representation

Use of resources to support children's mental subtraction and to help establish what subtraction physically is/looks like e.g. cubes, straws, counters, money, number squares, jottings/pictures.

OR (also applicable in year 2)

$14-6=8$


```
\(14-6=8\)
```


(14-6=8
4) 2

- Noticing what happens when you count back in tens (the digits in the ones column stay the same)
- Odd - odd = even; odd - even = odd; etc
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. This understanding could be supported by images such as this.

$$
15+5=20
$$

Some Key Questions

How many more to make...? How many more is... than...? How much more is....? How many are left/left over? How many fewer is... than...? How much less is...?
Is this true or false?
If 1 know that $7+2=9$, what else do \mid know? (e.g. $2+7=$ 9; $9-7=2 ; 9-2=7 ; 90-20=70 \mathrm{etc}$).
What do you notice? What patterns can you see?

Adjusting

35-9 (by subtracting 10 and adding 1)
35-19 (by subtracting 20 and adding 1)

Using known facts and Place Value

57-4
$7-4=3$ so $57-4=53$

Estimating

check calculations by subtracting in a different way solve $16-9$ by $16-10+1$
check by counting up from 9 to 16

Subtract 1 and 2-digit numbers to 100 (also applicable in year 3)
$34-3=31$
Begins without crossing the 10 s boundary

Number Line Subtraction

Using complementary addition to subtract by counting on in ones and tens through the use of a number line, then adding up the "jumps".

Encourage use of known number bonds to get to multiples of 10 , and from there jump in 10 s.

$10+3+2=15$

	65 ? 28 $65-28=37$	

SUBTRACTION: Y3		
Understanding the operation and related vocabulary.	Mental Calculations	Written Calculations
Understanding the operation Understand that the principles of the commutative and associative laws do not apply to subtraction Recognise that 41-35 is different from 35-41 Recognise that if calculating 19-6-3 the order matters (we cannot calculate 6-3 first) Understand the inverse relationship between addition and subtraction Write the related number sentences $\begin{array}{llll} 45+22=67 & 22+45=67 & 67=45+22 & 67=22+45 \\ 67-22=45 & 67-45=22 & 22=67-45 & 45=67-22 \end{array}$ Solve missing number problems e.g. $\begin{aligned} & 62-\square=19 \quad \square=68-54 \quad \square-\square=25 \\ & 59+34=100-\square \quad 45<\square-6 \quad \square-\square>54+9 \end{aligned}$ Vocabulary Hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100, inverse, rounding, column subtraction, exchange See also Y1 and Y2 Generalisations Noticing what happens to the digits when you count in tens and hundreds. Odd - odd = even etc (see Year 2) Inverses and related facts - develop fluency in finding related addition and subtraction facts.	Number facts Continue to recall and use subtraction facts to 20 fluently, and derive and use related facts beyond 100 using vocabulary related to subtraction 16 subtract 9,150 minus 70 , the difference between 80 and 170, 30 fewer than 110 Know pairs of two-digit numbers with a total of 100 and derive related subtraction facts e.g. $100-79,100-43,100-12 \ldots$ Mental methods and jottings subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds Counting up 102-97 (by counting up from 97, bridging the hundreds boundary; +3, +2) With jottings 343-170 (by counting up from 170, bridging the hundreds boundary; +30, +100, +43) Adjusting: 234-99 (by subtracting 100 and adding 1) With Jottings: 387-59 (by subtracting 60 and adding 1)	Continue to use number lines to show the difference with 3 digit numbers but begin to prepare for decomposition, using smaller numbers to begin with. Complementary addition to subtract 72-36 Expanded decomposition Introduce expanded column subtraction with no decomposition, modelled with place value counters (Dienes could be used for those who need a less abstract representation) when the child is ready for this method. 98-35 908 - 305 For some children this will lead to exchanging, modelled using place value counters or dienes

What's the same? What's different? Can you convince me? How do you know?	Use inverse operations to check answers check $564-150=414$ with 414+150=564 Subtract numbers with up to 4 digits $4,357-2,735=1,622$	$\begin{gathered} 9 \\ 561017 \\ -468 \\ \hline 139 \end{gathered}$ Use complementary addition to help subtraction if children need additional support with 4 digit numbers. (see Y3 for an example)

SUBTRACTION: Y5		
Understanding the operation and related vocabulary.	Mental Calculations	Written Calculations
Understanding the operation Continue to solve missing number problems $\begin{array}{lll} 6.5-\square=2.3 & \square=3-0.8 & \square-\square=1.2 \\ 5.4+2.7=10.3-\square & 5.2<\square-0.9 & \square-\square>7.2-1.9 \end{array}$ Begin to use brackets $(10-3) \times 6=\square \quad 10-(0.5 \times 7)=\square$ Vocabulary tens of thousands boundary, Also see previous years Generalisation Sometimes, always or never true? The difference between a number and its reverse will be a multiple of 9. What do you notice about the differences between consecutive square numbers? Investigate $a-b=(a-1)-(b-1)$ represented visually. Key Questions What do you notice? What's the same? What's different? Can you convince me? How do you know?	Number facts Continue to use knowledge of subtraction facts and place value to derive related facts with numbers to one decimal place (using subtraction vocabulary) 1.2 subtract $0.7,1.8$ minus 0.9 , the difference between 2 and 1.3, 0.3 fewer than 1.7 Know complements to 1 $0.78+\square=1 \quad 0.52+\square=1$ Recall pairs of three-digit numbers with a total of 1000 and derive related subtraction facts $1000-453,1000-239,1000-712 \ldots$ Mental methods and jottings Subtract numbers mentally with increasingly large numbers Subtract tenths, and one-digit whole numbers and tenths Counting up: $7.2-6.8$ (by counting up from 6.8 by bridging the units boundary; +0.2, +0.2) With jottings: $8.3-4.8$ (by counting up from 4.8 by bridging the units boundary; +0.2, +3.3) $8.3-4 \cdot 8=3.5$ Adjusting (with jottings): $8.3-1.9$ (by subtracting 2 and adding 0.1)	Subtract whole numbers with up to 5 digits using formal written methods Subtract decimals, including a mix of whole numbers and decimals and decimals with different numbers of decimal places up to 2 decimal places. Expanded subtraction Decomposition: Some children may still need the support of practical apparatus and models and images, though most children will no longer need to use the expanded method and should be confident using the compact method, having an understanding of the value of each digit. They should be confident using this method for decimals too. 25034-7185 $36.25-14.6$ (See year 4 for an example)

SUBTRACTION: Y6		
Understanding the operation and related vocabulary.	Mental Calculations	Written Calculations
Understanding the operation Use knowledge of the order of operations Understand that when there are no brackets in an expression, do multiplication or division before addition or subtraction Understand that if the operations are at the same level of priority, work out the example from left to right Continue to solve missing number problems $\begin{aligned} & 0.63-\square=0.32 \quad \square=0.5-0.33 \quad \square-\square=0.11 \\ & 0 . .89-0.4=1.3-\square \quad 0.75<\square-0.06 \quad \square-\square>0.82- \\ & 0.09 \end{aligned}$ Explore the order of operations using brackets compare $14-(3+5)$ with $(14-3)+5$ Vocabulary See previous years Generalisations Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of remembering. Sometimes, always or never true? Subtracting numbers makes them smaller. Some Key Questions What do you notice? What's the same? What's different? Can you convince me? How do you know?	Number facts Continue to use knowledge of subtraction facts and place value to derive related facts with numbers to two decimal places (using subtraction vocabulary) 3.09 subtract $0.04,0.16$ minus 0.08 , the difference between 0.2 and $0.12,0.06$ fewer than $0-19$ Know complements to the next whole number $4.83+\square=5 \quad 7.125+\square=8$ Mental methods and jottings Perform mental calculations, including with mixed operations, large numbers and decimals Calculate intervals across zero e.g. the drop in temperature from +5 to -3 Counting on using number lines (with jottings): $6.14-5.76$ (by counting up from 5.76 by bridging the units boundary; $+0.24,+0.14$) Adjusting (with jottings): $7.65-0.99$ (by subtracting 1 and adding 0.01) Estimating: Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy. $60.31-17.884$ is approximately $60-18$	DECOMPOSITION: By this stage, children should be confident using the compact method, for 6 digit numbers and decimals up to 3 places. $500203-34456 \quad 60.31-17.884$ Use complementary addition to help subtraction if children need additional support with larger numbers and problems involving money. £7.30-£3.55

PROGRESSION MAP

Multiplication

This must be viewed alongside the division map so that connections can be made.

YR	Y1	Y2	Y3	Y4	Y5	Y6
Understanding the operation and related vocabulary						
	Begin to understand multiplication by using concrete objects, pictorial representations and arrays to solve problems; make connections between the different representations	Understand multiplication - repeated addition - describing an array - scaling (to compare 2 items) e.g. twice as high - correspondence problems - one to many	Understand multiplication as - repeated addition - describing an array - scaling - correspondence problems - one to many and many-tomany	Continue to understand multiplication as - repeated addition - describing an array - scaling - correspondence problems - one to many and many-tomany	Understand - scaling by simple fractions -simple rates	Continue to understand - scaling by fractions - rate
		show that multiplication of two numbers can be done in any order	understand commutativity and associativity	understand the distributive law continue to understand commutativity and associativity	continue to understand the distributive, commutative and associative laws	use their knowledge of the order of operations
		recognise the inverse relationship between multiplication and division	understand the inverse relationship between multiplication and division	continue to understand the inverse relationship between multiplication and division		
record using marks that they can interpret and explain	use pictorial representations	write mathematical statements using the multiplication (\times), and equals (=) signs	solve missing numbers problems involving multiplication	continue to solve missing number problems	continue to solve missing number problems begin to use brackets	continue to solve missing number problems explore the order of operations using brackets
begin to use the vocabulary involved in multiplying double, pattern	begin to use the vocabulary involved in multiplying array, row, column, groups of, lots of,	understand and use the vocabulary involved in multiplying multiple, multiply, table, times, once, twice, three, ten. \qquad times as big, repeated addition	understand, read and spell vocabulary related to multiplication correctly product	understand, read and spell vocabulary related to multiplication correctly factor	read, spell and pronounce mathematical vocabulary related to multiplication correctly square, cube, prime numbers, prime factors, composite numbers, common factor	read, spell and pronounce mathematical vocabulary related to multiplication correctly common multiple
			Recalling number facts			

begin to count in twos and tens	count in multiples of twos, fives and tens	count in steps of 2, 3, and 5 from 0	count from 0 in multiples of $4,8,50$ and 100	count in multiples of 6, 7, 9,25 and 1000	use knowledge of counting in multiples to count in decimal steps (one decimal place)	use knowledge of counting in multiples to count in decimal steps (two decimal places)
know doubles of all numbers to 5	know doubles of all numbers to 10	recall doubles of all numbers to 15 and doubles of multiples of 5 to 50	recall doubles of all numbers to 20 , doubles of multiples of 5 to 100 and doubles of multiples of 100 to 500	derive doubles of multiples of 50 to 1000 and multiples of 1000	derive doubles of decimals (to one decimal place) using knowledge of place value	derive doubles of decimals (to two decimal places) using knowledge of place value
	begin to recognise odd and even numbers	recall and use multiplication facts for the 2,5 and 10 multiplication tables recognise odd and even numbers	recall and use multiplication facts for the 3,4 and 8 multiplication tables and begin to use knowledge of place value to derive related facts	recall multiplication facts for multiplication tables up to 12×12, and use place value to derive related facts	continue to recall multiplication facts for multiplication tables up to 12×12 fluently, and derive and use related facts	continue to recall multiplication facts for multiplication tables up to 12×12 fluently, and derive and use related facts
				recognise and use factor pairs	identify multiples and factors, and common factors of two numbers. establish whether a number up to 100 is prime and recall primes up to 19; find prime factors recognise and use square and cube numbers	identify common factors, common multiples and prime numbers continue to use square and cube numbers
Mental methods and mental methods with jottings						
count a set of objects by grouping in 2 s solve simple problems involving doubling and equal groups	count a set of objects by grouping in 2 s , 5 s or 10 s solve problems involving doubling and equal groups	calculate mathematical statements for multiplication within the multiplication tables through mental addition and number line jottings	calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers use doubling to connect 2, 4 and 8 multiplication tables	multiply mentally using place value, known and derived facts, including: multiplying by 0 and 1 ; multiplying together three numbers	multiply numbers mentally drawing upon known facts use factors to construct equivalence statements begin to multiply tenths, and one-digit whole numbers and tenths by one-digit whole numbers	perform mental calculations, including with mixed operations, large numbers and decimals
Formal written layout						
			begin to use formal written methods for two-digit numbers multiplied by onedigit numbers (for known multiplication facts)	multiply two-digit and three-digit numbers by a one-digit number using formal written layout	multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for twodigit numbers	multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication

MULTIPLICATION: Y1		
Understanding the operation and related vocabulary	Mental Calculations	Written Calculations
Understanding the operation Begin to understand multiplication by using concrete objects, pictorial representations and arrays to solve problems; make connections between the different representations. begin to use the vocabulary involved in multiplying Vocabulary ones, groups, lots of, doubling repeated addition array, row, column, groups of, lots of, times, columns, rows longer, bigger, higher etc times as (big, long, wide ...etc) Generalisations Understand 6 counters can be arranged as $3+3$ or $2+2+2$ Understand that when counting in twos, the numbers are always even. Some Key Questions Why is an even number an even number? What do you notice? What's the same? What's different? Can you convince me? How do you know?	Number facts Count in multiples of twos, fives and tens $02468 \text { 10... }$ How many legs have 5 teddies got altogether? How much money have I got in my purse? 5,10,15,20 How many 10ps do I need to buy a chocolate bar for 30p? Know doubles of all numbers to 10 Double 5 is $6+6=\square$ \square 2 groups of 5 How many altogether? 5+5 Double 5	No formal written layout. Children will be recording their mathematics using pictorial representations, arrays, number lines and mathematical statements. One bag holds 5 apples. How many apples do 4 bags hold? $\begin{gathered} 5+5+5+5=20 \\ 4 \times 5=20 \\ 5 \times 4=20 \end{gathered}$ Also applicable in year 2

	Begin to recognise odd and even numbers Use cubes to make 9 and recognise it is odd (as the cubes cannot be paired) Sort Numicon into odd and eve numbers What happens if we out two odd numbers together? Mental Methods and jottings Counting Count a set of objects by grouping in $2 \mathrm{~s}, 5 \mathrm{~s}$ or 10 s Count these marbles (2 at a time) Solve problems involving doubling and equal groups I need 5 eggs to bake a cake. How many eggs will I need to bake 2 cakes? Counting on There are 3 pots. Each pot has 2 seeds in. How many seeds are planted? (by counting on in twos using objects or pictures to keep track) Doubling and halving A ladybird has 6 spots on each wing. How many spots are there altogether?

MULTIPLICATION: Y2

Understanding the operation and related vocabulary	Mental Calculations	Written Calculations
Understanding the operation Understand multiplication as - repeated addition - describing an array - scaling (to compare 2 items) e.g. twice as long - correspondence problems - one to many Show that multiplication of two numbers can be done in any order recognise that 5×3 is equal to 3×5	Number facts Count in steps of 2, 3, 5 and 10 from 0 $\begin{array}{lllllll} 0 & 6 & 9 & 12 & 15 & 18 \\ 50 & 45 & 40 & 35 & 30 & \ldots \\ \text {....... } 0 \end{array}$ Recall doubles of all numbers to 15 and doubles of multiples of 5 to 50 Double 13 is $\square \quad 11+11=\square$ Double 25 is $\square \quad 45+45=\square$ Recall and use multiplication facts for the 2,5 and 10 multiplication tables 3 groups of 10 multiply 7 by 2 multiplied by 4 Recognise odd and even numbers Explain why 27 is an odd number Mental Methods and Jottings	No formal written layout. Children will be recording their mathematics using pictorial representations, arrays, number lines and mathematical statements.

Recognise the inverse relationship between multiplication and division

Write the related number sentences
$5 \times 2=10 \quad 2 \times 5=10 \quad 10=5 \times 2 \quad 10=2 \times 5$
$10 \div 2=5 \quad 10 \div 5=2 \quad 2=10 \div 5 \quad 5=10 \div 2$
Write mathematical statements using the multiplication (x), and equals (=) signs
$5 \times 4=20$
$16=8 \times 2$
$3 \mathrm{x} \square=15 \quad \square=2 \times 7 \quad 20=\square \mathrm{x} \square$

Vocabulary

multiple, multiply, multiplication array, multiplication tables / facts, groups of, lots of, times, columns, rows, once, twice, three, ten times as big, repeated addition,

Generalisation

Counting on/repeated addition

7×5 (by counting on in fives using fingers to keep track)
With jottings 3×5 (by counting on in threes using a number line to keep track)

Doubling and halving

7×2 (by recalling the doubles fact)
With partitioning
12×2 (by doubling 10, doubling 2 and recombining)

Estimating and Checking

Begin to use equivalent calculations to check answers

Repeated addition can be shown mentally on a number line		
Inverse relationship between multiplication and division. Use		
an array to explore how numbers can be organised into		
groups.		
Some Key Questions		
What do you notice?		
What's the same? What's different?		
Can you convince me?		
How do you know?		

MULTIPLICATION: Y3

Understanding the operation and related
vocabulary

Understanding the operation as

- repeated addition
- an array
- scaling - comparison and enlargement
- correspondence problems - one to many and many-tomany

Understand commutativity and associativity
recognise that 7×4 is equal to 4×7

recognise that if calculating $2 \times 3 \times 10$ the numbers can be combined in any order

Understand the inverse relationship between multiplication and division
$6 \times 3=18 \quad 3 \times 6=18 \quad 18=6 \times 3$ 18=3x6
$18 \div 3=6 \quad 18 \div 6=3 \quad 3=18 \div 6 \quad 6=18 \div 3$

	Mental Calculations
Number facts	
Count from 0 in mult	multiples of 4, 8, 50 and 100
08162432	
500450400350 .	50
	$\stackrel{+4}{12}_{1}^{4}$

Recall doubles of all numbers to 20, doubles of multiples of 5 to 100 and doubles of multiples of 100 to 500
Double 17 is \square
$19 \times 2=\square$
Double 65 is $\square \quad 85 \times 2=\square$

Double 300 is $\square \quad 400+400=\square$
Recall and use multiplication facts for the $2,3,4,5,8$ and 10x multiplication tables and begin to use knowledge of place value to derive related facts using correct vocabulary
3 groups of $8 \quad$ multiply 9 by 4
the product of 8 and $4 \quad 50$ multiplied by 4

Written Calculations
Begin to use formal written methods for two-digit numbers multiplied by one-digit numbers (for known multiplication facts)

Use models and images to demonstrate grid method

> Place value cards Use digit cards to make numbers in the grid. Show how each digit in a number moves one column to the left when a number is multiples by 10 and two columns to the left when a number is multiplied by 100 .

[^0]
$5 \times 6=30$
$6 \times 5=30$
$30 \div 6=5$
$30 \div 5=6$
Solve missing numbers problems involving multiplication $3 x \square=15$ \qquad $=2 \times 7$ $20=\square \mathrm{x} \square$
$25+10=5 \times \square \quad 15<\square \times 2 \square \mathrm{x} \square>20$

Vocabulary

partition, grid method, inverse, product

Generalisations

Connecting $\mathrm{x} 2, \mathrm{x} 4$ and x 8 through multiplication facts
Comparing times tables with the same times tables which is ten times bigger. If $4 \times 3=12$, then we know $4 \times 30=120$.
Use place value counters to demonstrate this.

When they know multiplication facts up to $\times 12$, do they know what $\times 13$ is? (i.e. can they use 4×12 to work out 4×13 and 4×14 and beyond?)

Key Questions

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?
with jottings
4×13 (by counting on in fours from 4×10 using a number line to keep track)

Partioning (with distributive law)
Without crossing the tens boundary
$32 \times 3=(30 \times 3=90,2 \times 3=6,90+6=96)$
with jottings
Crossing the tens boundary
$17 \times 5=(10 \times 5=50,7 \times 5=35,50+35=85)$
Doubling and halving

9×20 (multiply by 10 and then double) $9 \times 10=90$ Double 90 is 180

with jottings

28×4 (double and double again)
Double 28 is 56 , double 56 is 112

Using known facts and place value

Use manipulatives to demonstrate this
4×11
$4 \times 10=40$ so $4 \times 11=44$
13×3

Generalisations

When they know multiplication facts up to $\times 12$, do they know what $\times 13$ is? (i.e. can they use 4×12 to work out

4×13 and 4×14 and beyond?)

Key Questions

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?
With jottings
7×53 (by counting on in sevens from 7×50 using a
number line to keep track)
3×50
$3 \times 53=371$

Partitioning (using the distributive law)

53×6 (50x6=300 3x6=18 300+18=318)

Using doubling and halving

35×8 (double, double and double again)
Double 35 is 70 , double 70 is 140 , double 140 is 280

With jottings

73×5 (multiply by 10 and then halve)
$73 \times 10=730$ Half of 730 is 365 (Some children may need to partition 730 in a different way)

$73 \times 10=730$

Using factors

$15 \times 6=15 \times 3 \times 2$
$15 \times 3=4545 \times 2=90$

Using known facts and place value

$24 \times 10=240$ so $24 \times 9=216$ (by subtracting 24 from 240)
800x6
$8 \times 6=48$ so $800 \times 6=480$
36×42

x	30	6
40	1200	240
2	60	12
$1200+240+60+12=1512$		

127×23

x	100	20	7
20	2000	400	140
3	300	60	21

$2000+400+300+140+60+21=2921$
Higher attainers move onto expanded menthod for multiplication.

$$
36 \times 4
$$

$$
36
$$

$X \quad 4$

$24(4 \times 6)$
$120(4 \times 30)$

Linked to money
£3.36 x 2
£ 3.36
X 2
$.12(2 \times .06)$
$.60(2 \times .30)$

| 6.00 |
| :--- |(2×3.00)

£ 6.72

MULTIPLICATION: Y5

Understanding the operation and related vocabulary	
Understanding the operation of multiplication as:	
	scaling by sim simple rates
$\begin{gathered} 6 \\ \text { (fary cakes) } \end{gathered}$	
mil	∞
$\begin{gathered} 120 \mathrm{~g} \\ 1 \mathrm{mon} \end{gathered}$	$\cdots \stackrel{?}{?}$

Continue to understand the distributive, commutative and associative laws
recognise that 37×6 is the same as 30×6 added to 7×6 (distributive)
recognise that 25×7 is equal to 7×25 (commutative) recognise that if calculating $18 \times 4 \times 10$ the numbers can be combined in any order (associative)


```
\((a+b)+c=a+(b+c)\)
```


Continue to understand the inverse relationship between multiplication and division
write the related number sentences $6 \times 0.7=4.2 \quad 0.7 \times 6=4.2 \quad 4.2=6 \times 0.7 \quad 4.2=0.7 \times 6$ $4.2 \div 0.7=6 \quad 4.2 \div 6=0.7 \quad 0.7=4.2 \div 6 \quad 6=4.2 \div 0.7$

Mental Calculations

Number facts

Use knowledge of counting in multiples to count in decimal steps (one decimal place)
0.61 .21 .82 .4
8.4 7.7 7.0 6.3 ...

Derive doubles of decimals (to one decimal place) using knowledge of place value
Double 0.4 is \square
$0.7 \times 2=\square$
Double 3.8 is \square

$$
5.6+5.6=\square
$$

Continue to recall multiplication facts for multiplication tables up to 12×12 fluently, and derive and use related facts
7 groups of $8 \quad$ multiply 12 by 9
the product of 80 and $40 \quad 0.6$ multiplied by 4

Identify multiples and factors, and common factors of two numbers.
list the factors of 96
identify the common factors of 30 and 36 by listing
factor pairs
give a number that is a multiple of 3 and a multiple of 2 (and recognise these are multiples of 6)
list the multiples of 9 between 150 and 180 (using tests of divisibility)

Written Calculations

Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers.
Multiply numbers with up to one decimal place by onedigit whole number.

Use grid method, progressing to short and long multiplication for numbers with more digits when understanding in secure.

Grid method

	46×82	43.2×7
\mathbf{x}	$\mathbf{3 0}$	$\mathbf{5}$
$\mathbf{2 0}$	$\mathbf{6 0 0}$	$\mathbf{1 0 0}$
$\mathbf{6}$	$\mathbf{1 8 0}$	$\mathbf{3 0}$

$600+100=700$
$180+30=210$
$700+210=910$

x	6
2.0	12.0
0.3	1.8

13.8

Short multiplication

$36 \times 4=144$

$36 x 4=36$

Short multiplication for multiplying by a single digit

\times	300	20	7	327	Pupils could be asked to work out a given calculation using the grid, and
4	1200	80	28		then compare it to Your
				$\begin{aligned} & 308 \\ & 12 \end{aligned}$	method. What are the similarities and differences? Unpick the steps

Multiply 2-digit numbers by 2-digit numbers

Multiply 3-digit numbers by 2-digit numbers

$234 \times 32=7,488$

\times	200	30	4
30	6,000	900	120
2	400	60	8

Multiply 4-digit numbers by 2-digit numbers (also

MULTIPLICATION: Y6

Key Questions

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?
0.24×40 (double and double again, then multiply by 10)
Double 0.24 is 0.48 , double 0.48 is $0.96,0.96 \times 10=9.6$
68×25 (multiply by 100, then halve and halve again)
$68 \times 100=6800$ Half of 6800 is 3400 Half of 3400 is 1700

Using factors

$1.5 \times 16=1.5 \times 2 \times 8$
$1.5 \times 2=3 \quad 3 \times 8=24$
$32 \times 24=32 \times 3 \times 8$
$32 \times 3=9696 \times 8=800-(4 \times 8)=768$

Using known facts and place value

17x98
$17 \times 100=1700$ so 17×98 is 1666 (subtract 17×2 from
1700)

Estimating and checking

Use estimation to check answers to calculations and

determine, in the context of a problem, levels of accuracy
5872×54 is approximately 6000×50

Continue to use appropriate strategies to check answers

Check 496×5 by using an equivalent calculation
Multiply by 10 and halve or use a known fact and adjust

YR	Y1	Y2	Y3	Y4	Y5	Y6
Understanding the operation and related vocabulary						
	Begin to understand division as grouping and sharing by using concrete objects, pictorial representations and arrays to solve problems; make connections between the different representations	Understand the operation of division as sharing equally and grouping Begin to relate division and fractions	Understand the operation of division as sharing and grouping Relate division and fractions Understand the idea of a remainder and make sensible decisions about rounding up or down after division in the context of a problem	continue to understand the operation of division as sharing and grouping Relate division and fractions begin to understand ratio problems continue to make sensible decisions about rounding up or down after division in the context of a problem	continue to relate division and fractions Understand - scaling by simple fractions - simple rates - begin to understand ratio problems interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding	continue to relate division and fractions Continue to understand - scaling by fractions - rate - ratio problems interpret remainders as whole number remainders, fractions, decimals or by rounding, as appropriate for the context round answers to a specified degree of accuracy
		show that division of one number by another cannot be done in any order	understand that the principles of the commutative and associative laws do not apply to division	understand the distributive law continue to understand that the principles of the commutative and associative laws do not apply to division	continue to understand the distributive law	use their knowledge of the order of operations
	.	recognise the inverse relationship between multiplication and division	understand the inverse relationship between multiplication and division	continue to understand the inverse relationship between multiplication and division		
record using marks that they can interpret and explain	use pictorial representations	write mathematical statements using the division (\div), and equals (=) signs	solve missing numbers problems involving division	continue to solve missing number problems	continue to solve missing number problems begin to use brackets	continue to solve missing number problems explore the order of operations using brackets

begin to use the vocabulary involved in dividing share, halve	begin to use the vocabulary involved in dividing array, row, column, equal groups of,	understand and use the vocabulary involved in dividing divide, left over	understand, read and spell vocabulary related to division correctly in every, remainder	understand, read and spell vocabulary related to division correctly for every, quotient, divisible by, factor	read, spell and pronounce mathematical vocabulary related to division correctly prime numbers, prime factors, composite numbers, common factors	read, spell and pronounce mathematical vocabulary related to division correctly common multiple

Recalling number facts						
begin to count in twos and tens	count in multiples of twos, fives and tens	count in steps of 2, 3, and 5 from 0	count from 0 in multiples of $4,8,50$ and 100	count in multiples of 6, 7, 9,25 and 1000	use knowledge of counting in multiples to count in decimal steps (one decimal place)	use knowledge of counting in multiples to count in decimal steps (two decimal places)
know corresponding halves of doubles of all numbers to 5	know corresponding halves of doubles of all numbers to 10	recall corresponding halves of doubles of all numbers to 15 and doubles of multiples of 5 to 50	recall corresponding halves of doubles of all numbers to 20 , doubles of multiples of 5 to 100 and doubles of multiples of 100 to 500	derive corresponding halves of doubles of multiples of 50 to 1000 and multiples of 1000	derive corresponding halves of doubles of decimals (to one decimal place) using knowledge of place value	derive corresponding halves of doubles of decimals (to two decimal places) using knowledge of place value
	begin to recognise odd and even numbers	recall and use division facts for the $\mathbf{2 , 5} 5$ and 10 multiplication tables recognise odd and even numbers	recall and use division facts for the 3, 4, 8 multiplication tables and begin to use knowledge of place value to derive related facts	recall division facts for multiplication tables up to 12×12, and use place value to derive related facts	continue to recall division facts for multiplication tables up to 12×12 fluently, and derive and use related facts	continue to recall division facts for multiplication tables up to 12 $\times 12$ fluently, and derive and use related facts
				recognise and use factor pairs	identify multiples and factors, and common factors of two numbers, and primes	identify common factors, common multiples and prime numbers
Mental methods and mental methods with jottings						
count a set of objects by grouping in 2 s solve simple problems involving halving and sharing	count a set of objects by grouping in $2 \mathrm{~s}, 5 \mathrm{~s}$ or 10 s solve problems involving sharing, grouping and halving; make equal groups	calculate mathematical statements for division within the multiplication tables	calculate mathematical statements for division using the multiplication tables that they know, beginning to divide twodigit numbers by one-digit numbers (for known multiplication tables)	divide mentally using place value, known and derived facts, including dividing by 1	divide numbers mentally drawing upon known facts use factors to construct equivalence statements begin to divide tenths, and 1-digit whole numbers and tenths by 1-digit whole numbers	perform mental calculations, including with mixed operations, large numbers and decimals
Formal written layout						
				begin to divide two-digit and three-digit numbers by a one-digit number using formal written layout	divide numbers up to 4 digits by a one-digit number using a formal written method of short division and interpret remainders appropriately for the context	divide numbers up to 4 digits by a two-digit whole number using a formal written method

					vide numbers (up to two ecimal places) by 1-digit and -digit whole numbers ve answers up to 2 decimal places alculate decimal fraction quivalents
Estimating and checking					
		estimate the answer to a calculation use inverse operations to check answers use equivalent calculations to check answers	estimate the answer to a calculation use inverse operations to check answers use equivalent calculations to check answers	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy continue to use appropriate strategies to check answers	use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy. continue to use appropriate strategies to check answers

DIVISION: Y1

DIVISION: Y1		
Understanding the operation and related vocabulary.	Mental Calculations	Written Calculations
Understanding the operation Begin to understand division as both sharing and grouping using concrete objects, pictorial representations and arrays to solve problems. Children should begin to explore finding simple fractions of objects, numbers and quantities. Vocabulary Begin to use the vocabulary involved in dividing: share, share equally, one each, two each..., group, groups of, lots of, array, row, column, equal groups of Generalisations - True or false? I can only halve even numbers. - Grouping and sharing are different types of problems. Some problems need solving by grouping and some by sharing. Encourage children to practically work out which they are doing. Some Key Questions How many groups of...? How many in each group? Share... equally into... What can do you notice?	Number facts Experience regular counting on and back from different numbers in 1 s and in multiples of 2,5 and 10. Count a set of objects by grouping in $2 \mathrm{~s}, 5 \mathrm{~s}$ or 10 s Count these pennies (2 at a time) Know corresponding halves of doubles of all numbers to 10: Half of 6 is \square Half of 10 is \square Begin to recognise odd and even numbers. Use cubes to make 9 and recognise it is odd (as the cubes cannot be paired) They should begin to recognise the number of groups counted to support understanding of relationship between multiplication and division. $\begin{aligned} & 2+2+2+2+2=10 \\ & 2 \times 5=10 \end{aligned}$ 2 multiplied by 5 5 pairs 5 hops of 2	No formal written layout. Children record their maths using pictorial representations, arrays, number lines and mathematical statements. $10 \div 5=2$ Use of arrays as a pictorial representation for division. $15 \div 3=5$ There are 5 groups of 3 . $15 \div 5=3$ There are 3 groups of 5 .

Mental methods and jotting

Solve problems involving sharing, grouping and halving; make equal groups

Counting on

There are 10 seeds and some flower pots. Each pot needs 2 seeds in it. How many pots can be planted?

Sharing

Develops importance of one-to-one correspondence.
$15 * 5=3$
15 shared between 5
000000000000000

00

Grouping

Children should apply their counting skills to develop some understanding of grouping

How many groups of 2 are in 6?

- 0

Jo has 12 Lego wheels. How many cars can she make?
Sharing (also applicable in year 2)

Grouping (also applicable in year 2)

Ex;

-00000-00000-00000-000000$\underset{0}{1121}$
There are 20 apples altogether. They are put in bags of 5 . How many bags are there?

$\left.\begin{array}{l}\left.0 \begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) \\ 0 \\ 0 \\ 0\end{array}\right)$

Using doubling and halving

Know corresponding halves of doubles to 10.
Half of 10 is 5 .
A ladybird has 12 spots altogether. How many spots on each side of its body?

DIVISION: Y2		
Understanding the operation and related vocabulary.	Mental Calculations	Written Calculations
Understanding the operation Continue to understand division as both sharing and grouping using concrete objects, pictorial representations and arrays to solve problems. Begin to relate division to fractions. Continue to work on arrays and begin to understand the inverse relationship between x and \div. $15 \div 3=5 \text { There are } 5 \text { groups of } 3 .$ $5 \times 3=15$ $15 \div 5=3$ There are 3 groups of 5 . $3 \times 5=15$ Show that division of one number by another cannot be done in any order. $\begin{aligned} & 15 \div 5=3 \\ & 5 \div 15=3 \end{aligned}$ Write mathematical statements using the division and equals sign. $\begin{array}{ll} 6 \div 2=\square & \square=6 \div 2 \\ 6 \div \square=3 & 3=6 \div \square \\ \square \div 2=3 & 3=\square \div 2 \\ \square \div \nabla=3 & 3=\square \div \nabla \end{array}$ Vocabulary Understand and use the vocabulary related to division: Group in pairs, 3 s ... 10s etc equal groups of, divide, \div, divided by, divided into, remainder, left over. Generalisations	Number facts Count regularly, on and back, in steps of 2, 3, 5 and 10 from 0 . $\begin{array}{llllllll} 0 & 3 & 6 & 9 & 12 & 15 & 18 & \ldots \\ 50 & 45 & 40 & 35 & 30 & \ldots \end{array}$ Recall and use division facts for the 2,5 and 10 times table: How many groups of 10 in 30? Divide 14 by 2. 25 divided by 5 . Recall corresponding halve of doubles of all numbers to 15 and doubles of multiples of 5 to 50 . Half of 14 is \square Half of 30 is Recall and use division facts for the 2,5 and 10 times table. How many groups of ten in 30 divide14 by 25 divided by 5 Recognize odd and even numbers. Explain why 15 is an odd number Mental methods and jottings Counting on $70 \div 10=7$ (by counting on in tens using fingers to keep track). With jottings: $24 \div 3=8$ (counting on in threes using a number line to keep track).	No formal written layout. Children record their maths using pictorial representations, number lines and mathematical statements. Use knowledge of times table facts to recall inverse division $\begin{aligned} & 4 \times 10=40 \\ & 40 \div 10=4 \end{aligned}$ Sharing (further examples) $25 \div 5=5 \rightarrow$ share 25 between 5 groups Apply this to fractions: $3 / 4$ of $16=12 \rightarrow$ share 16 between 4 groups, count how many are in 3 groups.

Noticing how counting in multiples if 2,5 and 10 relates to the number of groups you have counted (introducing times tables)

An understanding of the more you share between, the less each person will get (e.g. would you prefer to share these grapes between 2 people or 3 people? Why?)

Secure understanding of grouping means you count the number of groups you have made. Whereas sharing means you count the number of objects in each group.

Some Key Questions

How many 10s can you subtract from 60 ?
I think of a number and double it. My answer is 8 .
What was my number?
If $12 \times 2=24$, what is $24 \div 2$?
Questions in the context of money and measures (e.g. how many 10 p coins do I need to have 60 p? How many 100 ml cups will I need to reach 600 ml ?)

Sharing (further examples)
Share 12 pencils equally between 6 pots (using objects/pictures)

Grouping (further examples)

12 pencils shared between 2 pots, how many in each pot?

Using doubling and halving

Know corresponding halves of doubles of all numbers to 15 and doubles of all numbers of multiples of 5 to 50.
$14 \div 2=7$ (by recalling the doubles first)
With Jottings
$24 \div 2$ (by halving 20 , halving 4 and recombining)

Using known facts and place value

If $4 \div 2=2$ then $40 \div 2=20$

Fractions

Find a half, a quarter and a third of shapes, objects, numbers and quantities. Finding a fraction of a number of objects to be related to sharing.
Explore visually and understand how some fractions are equivalent - e.g. two quarters is the same as one half.
3 apples shared between 4 people $=\frac{3}{4}$

DIVISION: Y3		
Understanding the operation and related vocabulary.	Mental Calculations	Written Calculations
Understanding the operation Understand the operation of division as sharing and grouping. Understand the principles of commutative and associative laws do not apply to division. Recognise that $24 \div 4$ is not equal to $4 \div 24$ Understand the inverse relationship between multiplication and division. $\begin{array}{llll} 6 \times 3=18 & 3 \times 6=18 & 18=3 \times 6 & 18=6 \times 3 \\ 18 \div 3=6 & 18 \div 6=3 & 6=18 \div 3 & 3=18 \div 6 \end{array}$ Continue using a range of missing number equations as in year 2 but with appropriate numbers. $\begin{array}{lll} 15 \div \square=5 & \square=14 \div 2 & 20=\square x \square \\ 5+10=35 \div \square \quad 7<\square \div 2 & \square \div \square>8 \end{array}$ Continue to relate fractions to division. $1 / 4$ of $16=16 \div 4$ Vocabulary Inverse, in every Generalisations Inverses and related facts - develop fluency in finding related multiplication and division facts. Develop the knowledge that the inverse relationship can be used as a checking method. Some Key Questions Questions in the context of money and measures that involve remainders (e.g. How many lengths of 10 cm	Number facts Count regularly, on and back, in steps of 3, 4 and 8. Count from 0 in multiples of $4,8,50$ and 100. $\begin{array}{lll} 0 & 8162432 \ldots . . \\ 500450400350 \end{array} . . .$ Recall and use division facts for the 3,4 and 8 times table. How many threes in 27? Divide 24 by 4 48 divided by 8 Divide 80 in to fours Recall corresponding halves and doubles of all numbers to 20 , doubles of multiples of 5 to 100 and doubles of multiples of 100 to 500 . Half of 16 is $\square \quad 18 \div 2=\square \quad$ Half of 70 is Mental methods and jottings Calculate mathematical statements for division using the multiplication tables that they know, beginning to divide two-digit numbers by one-digit numbers (for known multiplication tables). Counting on $70 \div 5$ (by counting on in fives from 50) With jottings: $52 \div 4$ (by counting on in fours from 4×10 using a number line to keep track). With remainders: $54 \div 4$ Partitioning	No formal written layout. Begin to divide 2 digit numbers by one digit numbers (for known multiplication tables). Grouping How many 6's are in 30 ? $30 \div 6$ can be modelled as: Becoming more efficient using a number line Children need to be able to partition the dividend in different ways. $48 \div 4=12$ Remainders Make sensible decisions about rounding up or down after division in the context of a problem. Sharing: 49 shared between 4 . How many left over? Grouping: How many 4s make 49. How many are left over?

can I cut from 81 cm of string? You have $£ 54$. How
many $£ 10$ teddies can you buy?)
What is the missing number?

$17=5 \times 3+-$
$=$
$=$

Without crossing the tens boundary:
$69 \div 3=23$
($60 \div 3=20 ; 9 \div 3=3$)
$20+3=23$
Partition number in different ways:
$52=50+2 ; 40+12 ; 30+12$ etc
With jottings
Partitioning crossing the tens boundary.
$65 \div 5=13$
(12×5)
(1×5)

With remainders: $67 \div 5=13 r 2$

Doubling and halving

$84 \div 2=42(80 \div 2=40)(4 \div 2=2)$
With jottings
$100 \div 4=25$ (halve and halve again)
Half of 100 is 50 , half of 50 is 25 .

Known facts and place value

Use multiplication and division facts they know to make links with other facts.
If: $3 \times 2=6,6 \div 3=2,2=6 \div 3$
Then: $30 \times 2=60,60 \div 3=20,2=60 \div 30$

Estimating

Estimate the answer to a calculation:
$52 \div 4$ is between 10 fours and 20 fours.

Use inverse operations and equivalent calculations to check answers:
Check $65 \div 5=13$ with $5 \times 13=65$.

Place value counters can be used to support children apply their knowledge of grouping.
$60 \div 10=$ How many groups of 10 in 60 ?
$600 \div 100=$ How many groups of 100 in 600 ?

Remainders

Understand the idea of a remainder and make sensible decisions about rounding up or down after division in the context of a problem.

Divide 2-digit by 1-digit (sharing with no exchange or

 remainders)

Divide 2-digit by 1-digit (sharing with exchange but no remainders - also applicable in year 4)

 2 and then dividing by 5 . Can you find any more rules like this?
Is it sometimes, always or never true that $\square \div \Delta=\Delta \div$ \square ?

Inverses and deriving facts. 'Know one, get lots free!' e.g.: $2 \times 3=6$, so $3 \times 2=6,6 \div 2=3,60 \div 20=3,600 \div$ $3=200$ etc.

Sometimes, always, never true questions about multiples and divisibility. (When looking at the examples on this page, remember that they may not be 'always true'!) E.g.:

- Multiples of 5 end in 0 or 5 .
- The digital root of a multiple of 3 will be 3,6 or 9 .
- The sum of 4 even numbers is divisible by 4 .
$78 \div 6=13$ Partition in to multiples of the divisor
$60 \div 6=10 ; 18 \div 6=3$
$10+3=13$
Using Numicon, dienes or place value counters as

support.

With jottings
Partitioning crossing the tens boundary
$185 \div 5=37 \quad(150 \div 5=30 ; 35 \div 5=7$
$30+7=37$
With remainders: $187 \div 5$
Continue to partition number in different ways:
$762=700+60+2 ; 600+120+42$

Doubling and halving

$600 \div 4$ (halve \& halve again)
Half of 600 is 300 , half of 300 is 150
With jottings
$112 \div 8$ (halve, halve and halve again)
Half of $112=56$, half of $56=28$, half of $28=14$

Factors

$500 \div 20$ (Divide 500 by 10 then divide by 2)
With jottings
$90 \div 6$ (Divide 90 by 3 then divide by 2)

Estimating

Estimate the answer to a calculation:
$138 \div 3$ is between 40 threes and 50 threes.
Use inverse operations and equivalent calculations to check answers:
Check $98 \div 7=14$ with $7 \times 14=98$

Short division can also be modelled for understanding using place value counters as shown below.
Calculations with 2 and 3-digit dividends. E.g.
$336 \div 3$
112
$3 \longdiv { 3 3 6 }$

$1 \quad 27$

Remainders

Continue to make sensible decisions about rounding up or down after division in the context of a problem.

DIVISION: Y5		
Understanding the operation and related vocabulary.	Mental Calculations	Written Calculations
Understanding the operation Continue to understand the distributive law and recognise that $65 \div 5$ is the same as $(50 \div 5)+(15 \div 5)$ Continue to relate fractions and division. Understand: - Scaling by simple fractions - Simple rates - Begin to understand links to ratio problems. Continue using a range of equations as in year 4 but with appropriate numbers. $\begin{array}{ll} \square=540 \div 6 & \square=3.2 \div 8 \quad 48=\square \div \square \\ 90 \div 30=6 x \square & \square x \square>600 \div 8 \end{array}$ Continue to solve missing number problems $\begin{array}{ll} \square=540 \div 6 & \square=3.2 \div 8 \quad 48=\square \div \square \\ 90 \div 30=6 x \square & \square x \square>600 \div 8 \end{array}$ Begin to use brackets. $(60+3) \div 7=\square \quad \square=10+(1.4 \div 2)$ Vocabulary common factors prime number, prime factors composite numbers short division square number cube number inverse power of Generalisations	Number facts Count regularly using a range of multiples, and powers of 10,100 and 1000 , building fluency. Practice and apply the multiplication facts to 12×12. Use knowledge of counting in multiples to counting in decimal steps (one decimal place). $\begin{array}{lllll} 0.6 & 1.2 & 1.8 & 2.4 & \ldots . . \end{array}$ Derive corresponding halves of doubles of decimals (to 1 place) using knowledge of place value. Half of $0.4=0.2 \quad 3.6 \div 2=1.8$ Continue to recall division facts for multiplication tables to 12×12 fluently and derive and use related facts: 560 divided by 7 divide 2.1 by 7 $4500 \div 5$, what is the quotient? 3.2 divided by 4 Identify multiples and factors and common factors of two numbers and primes. list the multiples of 9 between 150 and 180 (using tests of divisibility) Mental methods and jottings Divide mentally drawing upon known number facts. Use factors to construct equivalence statements. Begin to divide tenths and 1-digit whole numbers and tenths by 1-digit whole numbers. Partitioning Using distributive law: $546 \div 6(540 \div 6=90 ; 6 \div 6=1 \text { so } 90+1=91)$ With jottings	Divide numbers up to 4 -digits by a 1-digit number using a formal written method (short division) and interpret remainders appropriately for the context e.g. $\begin{aligned} & 3075 \div 5 ; 6831 \div 9 \\ & 5 \lcm{y y y y}^{3057} \end{aligned}$ Remainders Interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding. (See NCETM video - Division with exchange) See year 6 for further examples of short division

The = sign means equality. Take it in turn to change one side of this equation, using multiplication and division, e.g.
Start: $\mathbf{2 4}=\mathbf{2 4}$
Player 1: $\mathbf{4 \times 6 = 2 4}$
Player 2: $\mathbf{4 \times 6 = 1 2 \times 2}$
Player 1: 48 $\div \mathbf{2}=\mathbf{1 2} \mathbf{x} \mathbf{2}$
Sometimes, always, never true questions about multiples and divisibility. E.g.:

- If the last two digits of a number are divisible by 4 , the number will be divisible by 4 .
- If the digital root of a number is 9 , the number will be divisible by 9 .
- When you square an

even number the result will be divisible by 4 (one example of 'proof' shown left)
$24.5 \div 7(21 \div 7=3 ; 3.5 \div 7=0.5$ so $3+0.5=3.5)$
Continue to partition number in different ways:
$762=700+60+2 ; 600+120+42$

Doubling and halving

$14.8 \div 4$ (halve and halve again)
Half of $14.8=7.4$; half of $7.4=3.7$

With jottings:

$3800 \div 50$ (divide by 100 then double)
$3800 \div 100=38$; double $38=76$.

Factors

$84 \div 20$ (halve and divide by 10)
$84 \div 2=42 \quad 42 \div 10=4.2$
With jottings
$150 \div 6 \quad(150 \div 3=50$, then $50 \div 2=25)$.

Using known facts and place value

$8.4 \div 7$ (multiply dividend by 10 , then divide quotient by 10)
$84 \div 7=12,12 \div 10=1.2$

Estimating

Use rounding to check answers to calculation and determine, in the context of a problem, levels of accuracy:
$256 \div 12$ is approximately $2560 \div 10$.
Continue to use appropriate strategies to check answers:
Check $860 \div 9$ by using the inverse.

DIVISION: Y6		
Understanding the operation and related vocabulary.	Mental Calculations	Written Calculations
Understanding the operation Continue to relate fractions and division. Understand: - Scaling by simple fractions - Simple rates - Begin to understand links to ratio problems. Use their knowledge of order of operations. Understand that when there are no brackets, do multiplication or division before addition or subtraction. Understand that if the examples are at the same level of priority then work out the examples from left to right. Continue using a range of equations as in year 5 but with appropriate numbers. $\begin{array}{lll} \square=540 \div 0.6 & \square=0.48 \div 8 & 4.8=\square \div \square \\ 9 \div 0.3=6 \mathrm{x} \square & \square \mathrm{x} \square>0.56 \div 8 & \end{array}$ Explore the order of operations using brackets. compare $14 \div(2 \times 5)$ with $(14 \div 2) \times 5$ Vocabulary Common multiple Generalisations Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an	Number facts Children should count regularly, building on previous work in previous years. Use knowledge of counting in multiples to counting in decimal steps (two decimal places). $\begin{array}{lllll} 0.09 & 0.18 & 0.27 & 0.36 & \ldots \end{array}$ Continue to recall division facts for multiplication tables to 12×12 fluently and derive and use related facts: 3000 divided by 60 divide 0.12 by 6 $5800 \div 6$, what is the quotient? 0.64 divided by 8 Derive corresponding halves of decimals (to 2 places) using knowledge of place value. Half of 0.48 is $\square \quad 0.74 \div 2=\square$ Using known facts and place value: $0.99 \div 11$ (multiply dividend by 100 , then divide quotient by 100) $99 \div 11=9,9 \div 100=0.09$ Identify common factors, common multiples and prime numbers. $\begin{aligned} & 15 \div 6 \text { (divide by } 3 \text { then } 2 \text {) } \\ & 15 \div 3=5 \quad 5 \div 2=2.5 \end{aligned}$ Mental methods and jottings Perform mental calculations, including with mixed operations, large numbers and decimals. Partitioning Using distributive law:	Divide numbers up to 4 digits by a 1 digit or 2-digit whole number using a formal written method (short division and long division). Divide numbers up to two decimal places by 1-digit and 2-digit whole numbers. Give answers up to 2 decimal places. Calculate decimal fractions e.g. Short division: $56.4 \div 4 ; \quad 5246 \div 22 ; \quad 19.88 \div 7 ; \quad 1504 \div 8$ \square Long division: $2360 \div 15 ; 187.5 \div 15$

[^0]: Mental Methods and Jottings
 Counting on
 5×14 (by counting on in fives from 50)

